
Software Security Analysis on Internet-of-Things
Applications

Steven Ngo
Dept. of Computer Science and Software Engineering

California Polytechnic - San Luis Obispo
San Luis Obispo, CA
sngo12@calpoly.edu

Dongfeng Fang
Dept. of Computer Science and Software Engineering

California Polytechnic - San Luis Obispo
San Luis Obispo, CA
dofang@calpoly.edu

Abstract—In this paper, we present a software security analysis
on Internet-of-Things (IoT) applications. We first present a
system model of an IoT system from a software perspective. Based
on the proposed system model, we discuss the software attack
models and security objectives. Software security analysis is
presented. Based on the software security analysis, we propose a
software complexity and information score framework. A smart-
home case study is presented to show our proposed framework
can be used to analyze the security of the system.

I. INTRODUCTION

Internet-of-things (IoT) devices have been useful in enhanc-
ing people’s quality-of-lives, ranging from medical equipment
such as pacemakers and infusion pumps to smart-home devices
such as security cameras and voice-operated assistants [1], [2].
Due to the resource limitations of IoT devices, software imple-
mentations of IoT tend to be limited in resource consumption
and development time as much as possible. A lot of these
devices also are designed with new and innovative features
at the forefront in an attempt to grab new consumers as tech
companies compete against one another to get their devices
first to market. As a result, security implementations are either
postponed for future updates or never revisited, and easily
exploitable vulnerabilities such as guessable default passwords
and exploitable default configurations do not get patched up
or changed [3]. This introduces additional entry vectors for
malicious users who may want to compromise the IoT devices
in order to gain access to sensitive information or even hijack
the devices’ computational power for attacks [4].

Due to the heterogeneous nature of IoT devices, it is difficult
to create security solutions that can be applied across a wide
range of devices [5], [6]. Some devices may be lacking in their
amount of memory and computational power, such as when
comparing a home automation hub with a smart display and
operating system against door locks that have only just enough
to connect to a wireless network. Considering estimations from
Huawei say there will be close to 100 billion IoT devices by
2025, it is essential that all devices have security implementa-
tions that provide moderate level of countermeasures or error
mitigation [7].

This study will focus more on the software security aspect
of IoT devices, as well as looking into other perspectives
including implementation issues that arise during the software

development life-cycle and technical issues that are the result
of the software’s programming language composition. In addi-
tion, we also will be focusing on smart-home IoT devices due
to their exponentially increasing prevalence, their convenience
of purchasing and set-up, and their ease of usage. Smart-
home devices include smart plugs, locks, hubs, thermostats,
and home security cameras. The compromised smart-home IoT
devices can lead to a violation of a home and its residents’
privacy as well as weaken the home’s physical security [8].

There are a relatively few amount of academic literature that
focus on software security within the larger pool of general
IoT security. General threats and current issues within IoT
security, which include a wide variety of attacks that deal with
communication protocols and cryptography are studied in [7]
[9] [10]. The different perspectives regarding the practices and
methodologies within software engineering and programming
as it relates with IoT are discussed in [11] [12] [13] [14] [15].
Common malware to IoT devices that prey on vulnerabilities
within a device’s software and settings, as well as major
malware incidents and networks such as the Mirai botnet, are
studied in [3] [4].

Therefore, in this paper, we present a software security anal-
ysis on IoT applications. Our contributions are summarized as
the following:

• A general IoT network architecture is proposed based on
software perspectives.

• Software attack models and security objectives are pre-
sented based on our proposed system model.

• A software complexity and information scoring system
for the software and firmware of IoT devices is proposed.

• A case-study using our proposed scoring system is carried
out based on our smart-home lab set-up.

The rest of this paper is organized as followed. In section II
we propose a custom system model of an IoT general network
architecture based on a software perspective. In section III, a
software security analysis of IoT devices and its security im-
plementations of varying perspectives is presented. In section
IV, we propose a software complexity and information score
framework. In section V, we apply the score framework to a
custom case study using a simulated IoT smart-home system.
In section VI, the conclusion is presented.



Fig. 1. A General IoT Network Architecture (software-defined)

II. SYSTEM MODEL

In this section, we introduce a general IoT network architec-
ture and system environment based on a software perspective,
as well as software-based attack models and security objec-
tives.

A. General Network Architecture - Software Perspective

In Figure 1, a general IoT network architecture is shown.
The system model has three layers and four classifications
that have been created based on the networking connections
between types of devices as well as the complexity level and
functionality of IoT devices’ software and firmware.

• Network Gateway: These are often routers and gate-
ways that assist in the connectivity between all internet-
functioning devices and act as the bridge between a
system of IoT devices, any cloud services required by
the devices, and the rest of the internet. They contain
software to assist with establishing connections through
WiFi over wide and local areas, and network settings are
often configured and managed through a locally-available
web portal.

• Devices with a Full Operating System: These devices
have more complex software systems, which may include
being run on an operating system (OS) and be interacted
with for various user functionality through an interface
screen. These may include smart hubs with displays and
gaming consoles, and these devices most likely have
openly-available information regarding what OS they run,
or are based off of, and what programming languages
compose such OS’s. The software in these devices are
complex in scope and functionality and often allow users
to interact with applications and settings hosted on and

provided through the device itself. All of the different
applications (apps) available on these devices, including
first-party and third-party ones, also serve as software that
are open to malicious attacks.

• Intermediary Devices: We create a separate classifica-
tion for devices that don’t necessarily have as complex
software as devices with a full operating system, but act
as an in-between for devices with limited firmware and
network gateways. Both intermediary devices and devices
with a full operating system connect to network gateways
through WiFi, but within IoT, additional communication
protocols such as ZigBee, Zwave, and Bluetooth are
used to connect devices with hardware or networking
constraints to smart hubs, which then relay information to
network gateways or other devices in the network. These
smart hubs still have their own software implementations
to deal with network connections, and with that come
additional potential vulnerabilities. As a result of this
specification, some devices may have an overlap in terms
of where they can be classified, primarily smart hubs.

• Devices with Limited Firmware: These devices rely on
very little to no running software and instead run primar-
ily on firmware for establishing network connections and
executing its intended functions only as needed by users.
In a smart-home environment, this include devices such
as smart locks, smart door sensors, smart light switches,
and smart plugs. Direct user interaction with such devices
are limited to either their intended mechanical functions
such as manually (un)locking a smart lock or there may
even be a lack of any user interaction apart from its initial
set-up. A smart door sensor would simply be set up and
then automatically send information about any movement



to other devices classified as intermediary ones.

B. Software Attack Models

Throughout the three layers, there are different methods
to compromise the IoT devices that fall under their respec-
tive classifications from our software-defined IoT network
architecture. We will focus primarily on attacks that relate
most to software and applications. More traditional methods
of hacking still apply to IoT, but there are types of attacks
that have made a resurgence in frequency or play off of
the differences between older systems like computers and
the newer IoT devices. We will discuss further in-depth the
different aspects of IoT software security in the next section.

• Brute-force Dictionary Attacks: The most direct attack
is brute-forcing login information on IoT devices’ web-
access portals or anywhere else that requires device-
specific credentials. According to the Open Web Applica-
tion Security Project (OWASP) IoT Top 10 list of security
risks and vulnerabilities, the number one vulnerability
throughout all IoT devices is easily guessable, default
usernames and passwords that make it easy for hackers
to either simply look them up online or at most use
brute-forcing scripts to execute dictionary attacks [16].
Unauthorized access into a device compromises it en-
tirely, allowing the hacker to do whatever they wish as if
they have administrative access.

• Malware/Custom Attacks Based on CVEs: Malware is
another highly-effective method of compromising IoT de-
vices. Similar to malware found in traditional computing
environments, there are still a wide range of malware
used to attack IoT devices including worms, trojan horses,
spyware, and rootkits [3]. Infection and self-propagating
methods used in more traditional computing environ-
ments still apply within IoT. These include scanning
for open ports and testing a dictionary list of default
login credentials and relying on device-specific common
vulnerabilities and exploits (CVEs) for specially-crafted
attacks, which may include buffer overflows, SQL injec-
tions, privilege escalation, and cross-site scripting where
interfaces are available [5]. IoT malware can infect any
of our four device classifications.

• Software Update Attacks: Without proper validation of
software and firmware updates for IoT devices, they
are susceptible to a variety of attacks that could in-
volve intercepted updates that are then modified with
an attacker’s custom malware. They may also involve
purposefully replayed updates that are known to be flawed
but are still from the original manufacturer to bypass
weak validation and authentication techniques [17]. These
flaws can then be taken advantaged of by attackers to
compromise the device in any way they can configure
their attacks, including to steal confidential information
or use the device’s computational power in their botnets.

• Attacks due to Lack of Software Update: If an IoT
device can’t receive any software or firmware updates
at a very little to no frequency, attackers can capitalize

off of any vulnerabilities that were a result of poor
implementation and coding practices during the device’s
development phase. Even if these vulnerabilities are to
be eventually discovered by security researchers, without
a proper system in place for any patch fixes, it is much
more cumbersome to address such issues due to the nature
of certain IoT devices (especially ones that may not be
always on WiFi and rely on other devices).

C. Security Objectives

When considering software security design and implementa-
tions for smart-home IoT devices and systems, these security
objectives should be at the fore-front. Based on our attack
model, we propose the following security objectives:

• Availability: Especially for IoT devices that provide home
physical security, including security cameras and smart
locks, it is crucial for an IoT device to be active and
functioning as intended for as long as a user needs it,
which could be around-the-clock for certain physical
security-based devices. One scenario to consider is that
a potential home invader could hack into and disable a
smart lock installed on a house’s front door with a simple
buffer overflow attack if the device’s software does not
have any input validation on the passcode, completely
taking away any aspect of the device’s availability.

• Robustness: There should be countermeasures put in
place in the event a device is disabled or compromised
from a malicious attack to mitigate any further damage.
This could include alerts to the user combined with
automatic reboots and safe restarts with detection of
anomalous behavior. If possible, the IoT device’s software
should also be developed to withstand and still function
properly against excessive tampering and errors, with one
method of accomplishing this by following secure coding
practices such as implementing input validation on all
user-input interfaces or adhering to the principle of least
privileges for access control.

• Privacy: If an IoT device can easily be compromised
and taken over by a hacker due to improper security im-
plementations and poor software development practices,
it could quickly turn into that hacker’s spying device
depending on what the device’s original functionality
is. Home cameras may turn into malicious monitoring
devices without the original users even knowing, while
compromised movement sensors may send time informa-
tion back to command-and-control servers so that home
invaders can determine when the best times to rob a house
are. Any devices with the ability to pick up on noise may
also be turned against the original users to tap into their
conversations with potentially sensitive information.

• Patchability: This refers to an IoT device’s ability to be
sent software updates as necessary, as this would be es-
sential if a IoT development team discovers bugs and vul-
nerabilities within their software at a post-development
phase (after shipping products worldwide, months into
mainline usage) and they need to send out patch fixes



to prevent any further damage. This is a lot harder for
IoT devices to achieve, especially with devices with
limited firmware and may not always maintain an active
connection to the internet due to their reliance on another
device. Some devices may not even support the reception
of further updates due to it being more cumbersome to
implement such an ability or more expensive to maintain
IoT device software.

• Integrity: From the perspective of software integrity, a
device’s software needs to be able to handle changes
and updates without its base functionality being affected
(unless the original user is explicitly making custom
changes). It should also not be susceptible to rogue
software updating attacks through properly authenticating
origin of updates and validating any changes in software
against the original manufacturers.

III. SOFTWARE SECURITY ANALYSIS

There is a greater need for both general and more-specific
studies into the software security of IoT devices and their im-
plementations, as it is no longer acceptable to rely on develop-
ment practices and security implementations/techniques from
more traditional systems to support the exponentially growing
variety of IoT devices. In this section, we aim to provide
additional insight into various aspects of IoT software security
that utilizes existing information as a foundation and reference
point but branch into more difficult challenges that still need
to be addressed. Four various aspects are discussed, including
programming language vulnerabilities, resource constraints,
IoT malware in-depth, and software engineering/product de-
velopment.

A. Programming Language Vulnerabilities

Embedded systems are primarily developed in programming
languages that allow for explicit memory management, such
as C and C++. While this is beneficial for IoT devices, it
makes the device vulnerable to memory corruption attacks
including buffer overflows and out-of-bound reads that would
either allow the hacker to carry out remote code executions or
simply crash the device if the error is not handled gracefully
[10]. Remote code executions may result in the overwriting of
important data, privilege escalation, or injection of malware.

B. Resource Constraints

Traditional computer systems often are able to utilize se-
curity implementations that can deter and prevent generic
memory corruption attacks through randomizing and reorder-
ing address and stack spaces or diversify compiled code
structure. Implementations like these include address space
layout randomization (ASLR) and code obfuscation through
no-operation instructions [5]. But, hardware and resource
constraints make these much more difficult to implement on
IoT devices, as such implementations may require certain
hardware components that are fairly rare in IoT or be con-
sidered unnecessary usage of process and memory resources
that could be better used elsewhere for battery consumption

and performance time considerations [11]. For example, ASLR
normally requires a memory management unit (MMU) or
relocatable/loadable software libraries to implement, but IoT
devices normally lack a MMU as well as such software
libraries.

C. IoT Malware In-Depth

With the high and ever-growing number of active IoT de-
vices being permeated all throughout society, including homes,
hospitals, civil infrastructure, and industry, it is a target-rich
environment for IoT malware, as already seen with the Mirai
botnet and its variants [4]. The diversity, location spread, and
abundance of IoT devices makes them suitable members of
botnets that rely on their collective computational power to
carry out distributed denial-of-service attacks (DDoS), but
botnets are not the only result from malware. They’ve also
been known to engage in crypto-currency mining, monitor
and spy on sensitive information and communications, and
destroy a device’s internals. A large majority of IoT devices
are infected with brute-force dictionary attacks on default
credentials, balanced dictionaries, and more recently the ex-
ploitation of common vulnerabilities/CVEs. These attacks are
all preventable with proper security implementations and usage
of security best practices, yet the fact remains that it is
still a growing and evolving issue for device developers and
manufacturers, and attack methods are only getting more
sophisticated by the day.

D. Software Engineering/Product Development

Some of the security issues listed above, including
hard-coded, easily-guessable login credentials, programming
language-based/code-based vulnerabilities, and CVEs, can be
remedied and mitigated through usage of secure and clean
coding practices throughout software and product develop-
ment. Unfortunately, developers are too busy coming up with
novel and exciting features within the short time-frame they
already have to push out their own IoT products against
other tech companies racing to do the same in an effort
to increase profits. As a result, security implementations are
passed over for features that are more marketable to consumers
and secure-coding best practices are often overlooked in fast-
paced software development methodologies such as with Agile
[12]. While such fast-paced methodologies allow for increased
productivity and frequent release cycles for a company’s prod-
uct development timeline, a device’s level of security suffers
as a result simply because of how security implementations,
vulnerability patches, and attack countermeasures within IoT
devices are currently viewed as afterthoughts or considered
to have little to no practical consideration. [11] involves
a case study of two startup companies expanding into the
area of IoT that analyzed what size role did security have
throughout their development processes Both faced security-
related challenges within their use of agile processes and
sprint delivery, which included their approaches to integrating
security requirements into their development processes, third-
party component security, meeting market-specific regulations



and security standards, and run-time security (live patches and
updates).

IV. PROPOSED SOFTWARE COMPLEXITY AND
INFORMATION SCORE FRAMEWORK

In an effort to expand how we can rate IoT devices and
their security level from a stronger software-based perspective,
we propose a software complexity and information scoring
framework/system. This is inspired from scoring systems such
as the Common Vulnerability Scoring System (CVSS) from
the Forum of Incident Response and Security Teams (FIRST)
and the risk assessment framework from the Open Web
Application Security Project. Our framework focuses more
on the device itself as well as the information that is more
readily available from a consumer’s perspective. There are
multiple sections and scoring options that are assigned based
on whichever criteria is met. Three different perspectives are
considered. The proposed framework is as follows:

A. Updates:

• Has the device’s software/firmware been updated?

– Yes and updated within last 6 months
– Yes and not updated within last 6 months
– No

• How are updates activated/installed?

– Multiple options
– Singular option
– It doesn’t update

B. Settings Interaction:

• What is the device’s main method for interaction with?

– Directly through UI
– Through another device (app, web portal, smart hub)
– Can’t be interacted with

C. Operating System/Programming Language:

• Is there an operating system or known firmware running
on it?

– Yes and programming language info. is known
– Only OS/firmware info. is known
– Not found

In practical case, a numerical range can be assigned to each
question. To find the score of an individual device, add up
the scores from each criteria/question and divide by four
(finding the average). For example, consider a device that’s
had its software updated within the past 6 months, has multiple
update options, can directly be interacted with through the
UI, and there’s an operating system running on it with known
programming language information. This device would receive
the maximum score, numerical value depending on the range.

V. SMART-HOME CASE STUDY

One popular IoT system environment and practical usage is
with the concept of smart homes, where everyday household
activities are enhanced with IoT devices. This may include
automatically adjusting house temperatures through smart ther-
mostats, physical security upgrades through smart locks and
door sensors, or energy consumption monitoring and automatic
device power-offs through smart plugs and power strips [8].
With IoT devices simulating an entire smart-home system, we
perform a software security case study that involved gather-
ing information about the device’s updatability and software
specifications, analyzing the devices’ software complexity and
information, and referencing our data against existing vulner-
abilities and previous attacks. We use our software-based IoT
network model from section II and our proposed software
complexity and information scoring framework from section
IV to assist in our case study.

A. Software Complexity and Information Score

We first had to find as much openly-accessible information
as we could about all of the devices that composed our
smart-home IoT environment, which included official device
manufacturer websites, online store pages, and published de-
vice instruction sets, usage manuals, and media outlets that
covered such devices. The IoT devices that are a part of our
smart-home environment include the following, broken down
into the classifications from our software-based IoT network
model shown in Table IV-C. After finding as much official
information as possible on each device, we proceeded to use
such information to score each individual device based on our
software complexity and information scoring framework.

In Figure 2, we have a histogram representing the scores
from all of our listed devices. There were a total of 30 devices,
with 1 network gateway, 7 devices with a full operating
system, 1 intermediary device, and 21 devices with limited
firmware.

B. Ethics Statement

When performing the case study and survey with all of
the smart-home devices, including finding information on
all of the listed devices, we relied on what can be found
from a device’s manufacturer’s site and their support pages
or technology/industry news sites. We avoided using any
information from user-driven forums or media to keep our
analysis and conclusions as official as possible. We also did
not have physical access to any of the devices we mentioned
and studied throughout our research period.

VI. CONCLUSION

In this paper, we presented a software security analysis on
IoT applications. We first modeled a general IoT system from a
software perspective. The software attack models and security
objectives are discussed. The software security analysis is
also presented. A software complexity and information score
framework is proposed. Based on a smart home system, we ap-
plied our proposed software complexity and information score



Fig. 2. Framework score applied to IoT devices in the case study

TABLE I
LIST OF IOT DEVICES IN SIMULATED SMART-HOME ENVIRONMENT

Classifications from System Model Device Names
Network Gateways D-Link WiFi Router - AC1750 Wireless Internet

Devices with a Full Operating System Google Nest Hub Max, Amazon Echo Show 5, Facebook Portal, Nintendo Switch,
Samsung 43” Smart TV (2018 and 2019 models), Samsung 3rd Generation SmartThings Hub

Intermediary Devices Philips Hue Smart Hub

Devices with Limited Firmware

Philips Hue Smart Bulb, GE Enbrighten Smart Light Dimmer, Ecobee3 Lite Smart Thermostat (2nd gen.),
Wyze Cam Pan, Samsung SmartThings Motion Sensor, Linkind PIR Motion Sensor,
Ecolink Flood & Freeze Sensor, Ring Video Doorbell (1st gen.), Ring Video Doorbell Pro,
Kasa Smart Plug Power Strip, AmazonBasics Microwave, Google Nest Protect Smoke + Carbon
Monoxide Alarm, Google E Nest Automated Climate Thermostat, WGCC Bluetooth Fingerprint Padlock,
Gosund Mini Smart Plug, Kwikset SmartCode 888 Smart Lock, August Home Smart Lock Pro + Bridge,
Schlage Connect Smart Deadbolt, Centralite Micro Door Sensor, Dome Home Automation Water Shut-off Valve,
Centralite Smart Plug Mini

framework. The results show that currently, most IoT devices
in the system do not have sufficient security implementations
from a software perspective.

VII. ACKNOWLEDGEMENT

We would like to thank the Cal Poly - San Luis Obispo
to supporting this project as a part of the college’s Summer
Undergraduate Research Program 2020.

REFERENCES

[1] D. Zaldivar, L. A. Tawalbeh, and F. Muheidat, “Investigating the security
threats on networked medical devices,” in 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC), 2020, pp.
0488–0493.

[2] D. Fang, Y. Qian, and R. Q. Hu, “Security for 5g mobile wireless
networks,” IEEE Access, vol. 6, pp. 4850–4874, 2018.

[3] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in 2018 IEEE Symposium on Security and Privacy
(SP), 2018, pp. 161–175.

[4] G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and
the iot zombie armies,” in MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), 2017, pp. 267–272.

[5] A. Koivu, L. Koivunen, S. Hosseinzadeh, S. Laurén, S. Hyrynsalmi,
S. Rauti, and V. Leppänen, “Software security considerations for iot,” in
2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2016, pp. 392–397.

[6] D. Fang, Y. Qian, and R. Q. Hu, “A flexible and efficient authentication
and secure data transmission scheme for iot applications,” IEEE Internet
of Things Journal, vol. 7, no. 4, pp. 3474–3484, 2020.

[7] J. Zhang, H. Chen, L. Gong, J. Cao, and Z. Gu, “The current research
of iot security,” in 2019 IEEE Fourth International Conference on Data
Science in Cyberspace (DSC), 2019, pp. 346–353.

[8] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel,
“Program analysis of commodity iot applications for security and
privacy: Challenges and opportunities,” ACM Comput. Surv., vol. 52,
no. 4, Aug. 2019. [Online]. Available: https://doi.org/10.1145/3333501

[9] K. S. Niraja, Murugan, and P. Csr, “Security risks in internet of things:
A survey,” 12 2017, pp. 1–7.

[10] J. Deogirikar and A. Vidhate, “Security attacks in iot: A survey,” in 2017
International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), 2017, pp. 32–37.

[11] A. N. Duc, R. Jabangwe, P. Paul, and P. Abrahamsson, “Security
challenges in iot development: A software engineering perspective,” ser.
XP ’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3120459.3120471

[12] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world:
Software challenges in the iot era,” IEEE Software, vol. 34, no. 1, pp.
72–80, 2017.

[13] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An in-depth analysis of iot security requirements, challenges, and their
countermeasures via software-defined security,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 10 250–10 276, 2020.

[14] C. Bellman and P. C. van Oorschot, “Best practices for iot security:
What does that even mean?” 2020.

[15] I. Jacobson, I. Spence, and P.-W. Ng, “Is there a single method for the
internet of things?” Communications of the ACM, vol. 60, pp. 46–53,
10 2017.

[16] “Owasp internet of things project.” [Online]. Available:
https://wiki.owasp.org/index.php/

[17] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
“Secure Firmware Updates for Constrained IoT Devices Using Open
Standards: A Reality Check,” IEEE Access, vol. 7, pp. 71 907–71 920,
2019. [Online]. Available: https://hal.inria.fr/hal-02351794


